A NOTE ON THE RELATIVE LOSS OF INFORMATION IN CONFOUNDED DESIGNS

By

B. N. TYAGI

Institute of Agricultural Research Statistics, New Delhi (Received in August, 1969)

1. INTRODUCTION

Kshirsagar (1957) has presented a very elegant proof of the well-known property of the confounded designs that the total relative loss of information in a confounded design is always one less than the average number of blocks per replication. He has, however, restricted his results to the case of equi-replicated designs. The purpose of this note is to generalise the results to a general incomplete block binary design specified by the parameters $v_{,b}, k_{1,b}, k_{2,...,k_{b}}, r_{1,b}, r_{2,...,r_{p}}$.

2. Results

Following Kshirsagar (1957), let $N=(n_{ij})$ be the incidence matrix, where $n_{ij}=1$, if the *i*-th treatment occurs in the *j*-th block, otherwise $n_{ij}=0$. Let Q_i be the adjusted yield and t_j be the effect of the *i*-th treatment. Then.

$$E(Q) = ct$$

(1)

where Q and t denote the column vector (Q_1, \ldots, Q_v) and (t_1, t_2, \ldots, t_v)

respectively and

 $C = Dig(r_1, \ldots, r_v) - NDig(1/k_1, 1/k_2, \ldots, 1/k_b)N'.$

Let $\lambda_1, \lambda_2, \ldots, \lambda_s$ be the *s* non-zero characteristic roots of matrix *C*. If l_u is column vactor and $l_u't$ ($u=1, 2, \ldots, s$) is estimable, then $l_u = Cm_u$, where m_u is a column vector. In a randomised block design with Σk_i experimental units equally shared by the *v* treatments, the variance of the best estimate of $l_u't$ is

where

$$\overline{r} = \sum_{j=1}^{b} k_j / v.$$

The corresponding variance of the estimate of $l_u't$ in the confounded design with reduced normal equation (1) is $m_u' Cm_u \sigma^2$. Hence the relative information on $l_u't$ is given by

$$\mathbf{R}.\mathbf{I}.=\boldsymbol{l}_{u}'\boldsymbol{l}_{u}/\boldsymbol{r}\boldsymbol{m}_{u}'\boldsymbol{C}\boldsymbol{m}_{u} \qquad \dots(3)$$

Kshirsagar (1957) has futher shown that by suitably choosing m_{u_1} it can be easily shown that

$$\sum_{u=1}^{s} l_{u}' l_{u} / m'_{u} c m_{u} = \sum_{i=1}^{s} \lambda_{i}$$

Hence

ł

Total R I =
$$1/r \sum_{i=1}^{s} \lambda_i$$

Where s < v-1 is the number of estimable contrasts. But in a design

$$\sum_{i=1}^{s} \lambda_{i} = \text{trace } C = \sum_{i=1}^{v} r_{i} - \sum_{i=1}^{v} \sum_{j=1}^{b} n_{ij}^{2}/k_{j}$$
$$= \sum_{j=1}^{b} k_{j} - b \qquad \dots (4)$$
$$= v r - b$$

Hence the total relative information on s contrasts is given by

$$v - b/r$$
 ...(5)

which gives the total loss of information as

$$(v-1) - \left(\begin{array}{c} v - \frac{b}{r} \end{array} \right)$$
$$= (b/\bar{r}) - 1$$
$$= \frac{vb}{b} - 1.$$
$$\sum_{i=1}^{\sum k_{i}} b_{i}$$

...(O

3. EXAMPLE

In a qualitative-cum-quantitative experiment, the number of replications for the dummy treatments is generally more than those of other treatments combinations. For example, consider the experiment which has all possible combinations of 3 levels (0, 1, 2) and 3 qualities (0, 1, 2) of nitrogen and 2 levels of $P_2O_5(0, 1)$. The design partially confounding Q and NQ is given in Table 1.

	Replication I	Replication II	
Block I	Block II Block III	Block I Block II	Block III
$\begin{array}{c} n q p \\ 0 - 0 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n q p . 0 0
0 — 1	0 - 1 1 - 1	0 - 1 0 - 1	0 — 1
12 0	100110	1 1 0 1 2 0	I 0 0
121	0 0 1 1 1 1	1 1 1 1 2 1	1 0 1
2 1 0	2 2 0 2 0 0	2 2 0 2 0 0	2 1 0
2 1 1	2 2 1 2 0 1	2 2 1 2 0 1	2 1 1

TABLE 1

$3 \times 3 \times 2$ qualitative-cum-quantitative experiments

On analysing the above design by fitting of constants by the method of least squares, it is found that the loss of information on each of 2 df. of Q is 1/6 and that on each of 2 df. of NQ is 1/2. Hence the total loss of information is 4/3. From (6) the total loss of information also works out to

$$\frac{14 \times 6}{3b} - 1 = 4/3$$

where v is the number of distinct treatments.

REFERENCE

Kshirsagar, A.M. (1957) : A note on the total relative loss of information in any design. Cal. Sta. Ass. Bull., 7, 78-81.

61